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ABSTRACT 
 

Accurate prediction of sugarcane yield is essential for trade, economic planning, 

and sustainable agriculture in India. This study addressed the challenge of 

forecasting sugarcane yield by evaluating the effectiveness of time series 

modelling and machine learning algorithms. Leveraging data spanning from 

2001 to 2020, the research focuses on predicting the sugarcane yield for the 

subsequent years. The problem statement revolves around the need for precise 

yield predictions to inform decision-making in the agricultural sector. Methods 

employed included the utilization of Autoregressive Integrated Moving Average 

(ARIMA) for time series analysis and machine learning algorithms such as 

Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting 

Machine (GBM). The analysis encompassed sugarcane yield data spanning 

multiple years, with predictions extending for a specified duration. Through 

analysis of temporal patterns and dependencies within the sugarcane yield time 

series data using Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF), the study optimized the predictive models. Results indicated 

that ARIMA outperformed machine learning algorithms, exhibiting superior 

performance with a root mean square error of 36700.68 and a minimum AIC value 

of 456.7. The study emphasizes the significance of accurate yield predictions for 

agricultural planning and decision-making, highlighting the implications for 

sustainable crop management and the fortification of Indian sugar industry. The 

study affirms the importance of informed decisions facilitated by accurate yield 

predictions in resilient agricultural sector. Overall, this study contributes to the 

advancement of sugarcane yield prediction, offers practical insights for 

stakeholders and policymakers in India's agricultural landscape. 
 

Keywords: ARIMA, gradient boosting machine, machine learning methods, 

random forest, sugarcane yield prediction, support vector machine 
 

 

 

INTRODUCTION 
 

 

Sugarcane has substantial impact on India's trade, economy and lifestyle. It is the most extensively 

cultivated cash crop in India and annually contributes about ₹ 27,000 crores to the country’s economy. 

Sugar production, India's second-largest agriculture-based business after cotton production, is totally 

dependent on sugarcane harvest. More than 5 crore farmers and labourers are employed in India's 

sugar and sugarcane industries alone. In India, where sugarcane is planted on over 5 million ha, sugar 

production ranks 2nd in the world (Sneha and Bhavana, 2023). An estimated average 35.5 million tons 
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(m t) of sugarcane are harvested annually in India, yielding 30 m t sugar (Bhatt et al., 2023). There are 

about 732 sugar mills in India, which contribute about 5 KW of renewable energy to the national grid 

(Bhatt and Singh, 2021). The Government of India is investing heavily in ethanol blending to become 

self-sufficient in fuel business, which is solely dependent on the output of sugarcane (Final Report of 

the Task Force on Sugarcane and Sugar Industry, NITI Ayog, India, 2020). Sugarcane is an important 

alcohol source for biofuel manufacture. Presently, there is increased interest in using sugarcane for 

bio-based goods such as bio-plastics and bio-chemicals to aid nation’s shift to environmentally 

acceptable alternatives. Sugarcane's economic importance as a key cash crop supporting millions of 

farmers and employees has also drawn attention to the industry, influencing legislative decisions and 

market dynamics (Mishra et al., 2021). As a result, effective systems that provide fast and accurate 

information on sugarcane production and growth conditions at regional and global sizes are in high 

demand. The management of import-export, marketing, and timely production decisions, as well as 

distribution, pricing, and other critical agricultural strategies, depend on accurate crop production 

forecasts. Although the current crop yield prediction models work reasonably well, there is still a need 

for better outcomes because crop production prediction is a difficult task in precision agriculture 

(Filippi et al., 2019). 

Predicting agricultural yield has become a highly intricate challenge in the modern era. However, 

advancements in machine learning have emerged as the most promising method to accurately forecast 

crop production even before cultivation, without the need for extensive human intervention (Das et al., 

2023). By spotting patterns, correlations, and trends in datasets, Machine Learning (ML) makes it 

possible to extract insightful information from them. These models need to be trained using datasets 

that depict the results based on prior knowledge. Predictive models are constructed by combining 

several features; and during training phase their parameters are defined using previous data. A part of 

data from training phase is saved for model testing and performance evaluation. There are several 

difficulties in developing a high-performance predictive model in ML research. To successfully 

address these problems, it is critical to select the appropriate algorithms; and both the platforms and 

algorithms must be capable of handling huge amounts of data (Zhu et al., 2023). The integration of 

ML into agriculture marks a significant advancement towards sustainable and data-driven farming 

practices. It empowers stakeholders with accurate information, reducing uncertainties and maximizing 

productivity. As technology continues to evolve, the application of ML in agriculture is likely to 

expand, leading to more efficient and resilient food production systems in future (Alpaydin, 2010). 

Various ML methods have extensively been employed for crop yield prediction, leveraging their 

capability to recognize nonlinear patterns in large datasets. Models such as LSTM, GPR, and Holt-

winter time series have been validated for sugarcane yield prediction, with LSTM demonstrating the 

highest accuracy (Saini et al., 2023). Additionally, RF models calibrated with different predictors 

exhibited promising results for sugarcane yield forecasting, with an optimal RF model achieving a 

RMSE of 9.9 t ha-1 (Dos Santos Luciano et al., 2021). Integration of ML algorithms, as seen in opti-

SAR sugarcane yield prediction model, has shown improved accuracy as compared to the single-base 

models. Combining ML algorithms with remote sensing has also proved effective, outperforming the 

individual classification methods and resulting in relatively low mean square error values for various 

crops (Ilyas et al., 2023). Further, ML techniques such as neural networks (NN), deep learning (DL), 

random forest (RF), support vector regressions (SVR), and gradient boosting trees (GBT) have widely 

been used in crop yield modelling, with RF and NN models often demonstrating the highest prediction 

accuracies (Jagtap et al., 2022). However, challenges arise with small sample sizes in high-

dimensional feature spaces, for which Bayesian models and ensemble learning techniques like bagging, 

boosting, and model stacking provide effective solutions, improving the generalizability of ML models 

fitted over sparse data (Vabalas et al., 2019). 

Everingham et al. (2016) have emphasized the urgency of harnessing data mining and ML 

technologies to enhance industry insights for making critical business decisions that promote 

sustainable agricultural systems. In their study, the researchers employed RF models on three distinct 

datasets related to biomass and climate indices. By using these datasets, they successfully forecasted 
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sugarcane yields, highlighting the potential of ML techniques to provide valuable guidance to the 

agricultural industry. With the ability to analyse vast amounts of data, data mining and ML can 

significantly contribute to the informed decision-making, ensuring the long-term sustainability of 

agricultural practices. With rapid improvements in ML techniques, several researches have studied the 

utility of these methods in forecasting agricultural outcomes. Several researchers have combined crop 

model derivatives with ML approaches to create statistical models for yield prediction (Liu et al., 2017). 

Machine learning (ML) is not limited to yield prediction alone; but has also been harnessed to 

forecast variations in rainfall patterns, crucial for agriculture. By assimilating historical meteorological 

data and employing sophisticated algorithms, ML models can provide valuable insights into the potential 

changes in rainfall distribution, thereby help the farmers to adapt the practices for optimizing water 

usage and mitigate the impacts of droughts or excess precipitation (Xing et al., 2018). In India, the use 

of ML in advanced agricultural yield assessments has recently gained attraction, with research utilizing 

ML algorithms to forecast sugarcane, paddy, and cotton yields (Guruprasad et al., 2019; Prasad et al., 

2021; Arumugam et al., 2021; Mourão et al., 2021). Using moderate-resolution satellite photos that 

are suitable for analysis, Nihar et al. (2022) forecasted the sugarcane crop production for Uttar Pradesh 

(UP). In UP, district-level sugarcane yield predictions were trained using ML approaches. Further, the 

accurate crop masks and high-resolution satellite photos are required to obtain satisfactory outcomes. 

Neethi et al. (2023) worked on the efficient estimation of mango canopies yield using ML method 

while Khan et al. (2023) used ML and stochastic pattern analysis for forecasting time-series data. 

Lovesum et al. (2023) analysed best fit ML method for smart agriculture. The current study had two 

primary objectives viz., to analyse historical sugarcane yield data to identify temporal patterns and 

dependencies using time series modelling, specifically the Autoregressive Integrated Moving Average 

(ARIMA) method, as well as ML techniques like RF, SVM, and Gradient Boosting Machine (GBM); 

and to explore the effectiveness of autocorrelation in determining the optimal ARIMA model 

(Cowpertwait and Metcalfe, 2009; Tunnicliffe, 2016). Additionally, ML algorithms such as RF, SVM, 

and GBM may be used to estimate sugarcane yield, and compare their predictive capabilities with 

ARIMA model. The ultimate goal was to identify the most accurate approach for estimating sugarcane 

yields, thus may provide valuable insights for effective agricultural planning and decision-making 

concerning India's sugarcane production and trade. 
 

 

 

MATERIALS AND METHODS 
 

 

Data 

This study utilized Machine Learning (ML) and time series modelling to forecast sugarcane crop yield 

in India based on data spanning the past twenty years (2001 to 2020). The year-wise data on sugarcane 

productivity was extracted from the website National Statistics on Sugarcane, ICAR 

(https://sugarcane.icar.gov.in/index.php/sugarcane-statistics/) and deployed in R for analysis. The 

data for this study were divided into a training set (80%) and a holdout set (20%) for model assessment. 
 

Time series modelling 

Time series analysis plays a pivotal role in forecasting crop yields, enabling experts to analyse 

historical data over time and identify patterns, trends, and seasonality in production. Among the 

various methodologies, the seminal work of Box and Jenkins serves as a foundational reference (Box 

et al., 2015). Their approach known as the Box-Jenkins methodology provides a systematic framework 

for time series modelling, including the development of Autoregressive Moving Average (ARMA) 

and Auto-regressive Integrated Moving Average (ARIMA) models. 
 

ARMA model: The ARMA model comprises of two components: Auto-regressive (AR) and Moving 

Average (MA) components. In ARMA (p, q) model, "p" represents the AR component's order, and 
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"q" signifies the MA component's order. The AR component captures autocorrelation by incorporating 

lagged values, while MA component relates the present values to past forecast errors. Mathematically:  
 

           AR component: 𝑦(𝑡) = 𝑐 + ∑ 𝜙𝑖𝑦𝑡−𝑖 + 𝜖𝑡 

     MA component: 𝑦(𝑡) = 𝑐 + ∑ 𝜃𝑖𝜖𝑡−𝑖 
 

Where, y(t) is the value of time series at time t; c represents the constant or intercept in the model; 𝜙𝑖’s are 

the parameters of the autoregressive (AR) part of the model; 𝜃𝑖’s are the parameters of the moving average 

(MA) part of the model. And 𝜖𝑡 represents the error term at time t. 
 

Extending the ARMA framework, ARIMA incorporates an integrated (I) component to address non-

stationarity. In ARIMA (p, d, q) model, "p" represents the AR order, "d" signifies the differencing 

order, and "q" represents the MA order. The integrated component account for the number of 

differencing steps required to achieve stationarity. Mathematically: 
 

Integrated component: 𝑦(𝑡) − 𝑦(𝑡 − 𝑑) 
 

Linkage between ARMA and ARIMA models: ARIMA encompasses ARMA, allowing for both 

stationary and non-stationary data. ARIMA simplifies to ARMA when data is stationary (d = 0), and 

it employs differencing to handle non-stationarity. Cowpertwait and Metcalfe (2009) further elaborated 

on these concepts, emphasizing ARIMA's versatility in handling various time series data 

characteristics. 
 

Machine learning algorithms 

Machine learning (ML), a branch of artificial intelligence, utilizes algorithms to learn from data and 

uncover correlations, providing solutions to various problems. In the realm of crop yield prediction, 

previous crop year data serves as training data to estimate current crop production. Machine learning 

encompasses three main types: 
 

a) Supervised ML: This category of algorithms utilizes labelled variables and a mapping function from 

input to output. If "X" represents the input variable and "Y" represents the output variable, the function 

can be denoted as Y = f(X). Supervised learning is further divided into regression (for continuous 

output) and classification (for discrete output) models. The goal is to find a function that accurately 

maps the inputs to their corresponding targets, minimizing prediction errors. 
 

b) Unsupervised ML: In contrast to supervised learning, unsupervised ML operates solely on input 

variable "X" without labelled output or target variable "Y." Algorithms in this category aim to discover 

patterns or structures within the data. For example, K-means clustering is used for grouping data points 

into clusters based on similarities. 
 

c) Reinforcement ML: Unlike supervised and unsupervised learning, reinforcement learning involves 

the algorithm interacting with an environment and learning from feedback. The algorithm observes 

actions and responses to environmental data to maximize prediction accuracy. Deep reinforcement 

models are applied to optimize agricultural environments for crop improvement. 

In summary, ML algorithms, depending on the type, can learn from labelled data (supervised), 

discover patterns from unlabelled data (unsupervised), or interact with an environment to optimize 

predictions (reinforcement). These techniques have diverse applications and are essential tools for 

addressing a wide range of problems in various fields, including agriculture (Pavani and Augusta, 2023). 
 

Random Forest ML algorithm 

Random Forests (RF) are robust ensemble learning techniques capable of handling both classification 

and regression tasks. They construct a group of decision tree models to predict categorical or 

continuous outcome variables. Each decision tree iteratively divides the data into more homogeneous 

subsets (nodes) based on predictor variables, enhancing the predictability of response variable. The 

“RF" tool from the R statistical package was utilized to build random forest classification as well as 

regression models. To introduce diversity, split points of each tree were randomly selected from a 

subset of all available predictor variables. For regression models, the default random subset size was 

one-third of all available predictors, while classification models used the square root of the total 
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number of predictors. Each node in trees was constrained to a minimum size of one for classification 

tasks and five for regression tasks to control tree growth and reduce calculation times. 

RF technique evaluates the Out-of-Bag (OOB) component of data's regression prediction error to 

determine the relative importance of predictor variables. This OOB section, representing about 30% 

of dataset, is not utilized in decision tree construction process. Variable relevance for classification 

models is determined by mean percent fall in classification rate when a particular variable is 

eliminated. Conversely, for regression models variable significance is assessed as the average increase 

in mean squared error caused by the deletion of a specific predictor variable. It is noteworthy that default 

parameter values of RF package were used in this study for consistency across the models. By leveraging 

RF and assessing variable importance, valuable insights into the factors affecting the response variable 

are gained, facilitating better prediction and understanding the sugarcane production dynamics. This 

method ensures robust and reliable results, enabling data-driven decisions and recommendations for 

agricultural planning and policy-making. 
 

Support vector machine (SVM): SVM, a powerful ML technique, is used in regression and 

classification tasks. In this research, SVM was employed for regression to predict sugarcane 

production, a task involving forecasting a continuous response variable. SVM regression process 

entails finding the best hyperplane in the feature space that separates data points into different classes, 

representing various levels of sugarcane production. SVM aims to maximize the margin between data 

points and hyperplane, enhancing the model's ability to generalize unseen data. The SVM component in 

R statistical package was used to construct SVM regression models. To achieve optimal performance, 

the SVM model's hyper-parameters were optimized using the strategies like grid search and cross-

validation. In SVM modelling, selecting the appropriate kernel function, such as linear, polynomial, 

or Radial Basis Function (RBF), is crucial as it affects how the data are transformed into a higher-

dimensional space. In SVM regression, the projected value of continuous response variable (sugarcane 

production) is based on the mean fitted response computed from all individual trees formed from each 

bootstrapped sample. SVM algorithm aims to generate precise and accurate forecasts by minimizing 

the error between the anticipated and actual sugarcane production figures. 
 

Gradient boosting machine (GBM): Gradient boosting (GB), an ensemble learning method, is used for 

regression and classification tasks. In this study, GB was employed to anticipate sugarcane production, 

focusing on continuous response variable forecasting. GB sequentially assembles a group of decision 

trees, with each tree built to correct the mistakes of those preceding it, thereby enhancing the overall 

forecast accuracy. The intricate linkages and patterns found in sugarcane production data are better 

understood thanks to this sequential learning process. Additionally, the data for this study were divided 

into a training set (80%) and a holdout set (20%) for model assessment. The GBM package in R was 

used to create GB models. The model's hyper-parameters, such as maximum tree depth, learning rate, 

and number of boosting iterations, were optimized using techniques like grid search and cross-

validation to obtain the ideal values. GB employs the gradient of loss function to guide the growth of 

subsequent decision trees, iteratively partitioning the data into more homogeneous subsets. By 

aggregating predictions from each tree, weighted by learning rate that regulates each tree's 

contribution, the anticipated value of continuous response variable (sugarcane production) is determined. 
   

Analysis and interpretations 

Time series analysis: The Autoregressive Integrated Moving Average (ARIMA) model requires Auto-

correlation Function (ACF) and Partial Auto-correlation Function (PACF), two essential analytical 

approaches used in time series modelling. These functions can be used to assess the statistical 

significance and linkages between observations in a univariate time series. ACF calculates the 

relationship between a time series current value and its lag values. In other words, it assesses how the 

current value 𝑌𝑡 and its previous values 𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝 relate to one another. One can identify the 

correlations existing in data by using comprehensive auto-correlation diagram that the ACF gives. On 

the other hand, PACF delves deeper into the relationships by assessing the correlation of the remaining 
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effects after removing the variations explained by previous lags. In essence, PACF gives us insights 

into the correlation of next lag after accounting for the effects of all the earlier lags. By capturing the 

remaining correlation, the PACF helps to understand the direct relationship between specific lags. 
In ARIMA modelling process, the first crucial step is to test the stationarity in time series data. 

Stationarity is important because ARIMA models work best with stationary data, where the statistical 

properties like mean and variance remain constant over time. The Augmented Dickey-Fuller (ADF) 

test is a commonly employed to determine if a time series is stationary or not. If ADF test indicates 

stationarity, we can proceed with the modelling process. Creating a correlogram, which shows ACF 

and PACF of stationary time series, comes next after proving stationarity. The PACF assesses the 

correlation after accounting for the effects of earlier lags, whereas ACF analyses the correlation 

between the present value and its lagged values. We may choose the correct orders of ARIMA model, 

such as the autoregressive (AR) and moving average (MA), by analysing the correlogram. 

Fitting metrics including the Akaike Information Criterion (AIC), corrected AIC (AICc), and 

Bayesian information criterion (BIC) were used to find the best-fitted ARIMA model for predicting 

sugarcane yield. By taking into the account both the model's complexity and goodness of fit, these 

criteria aid in the selection of models. Better-fitted models with ideal accuracy and simplicity trade-

offs have lower values for AIC, AICc, and BIC. With the data transformed into a stationary series, we 

fitted the ARIMA model so that it captures the relevant temporal patterns and dependencies.  
 

Machine learning methods 

Three distinct machine learning algorithms, viz., SVM, RF and GBM, each leveraging unique 

strengths, were employed to predict sugarcane productivity. Data pre-processing preceded model 

training to optimize the performance. Evaluation metrics including Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) were utilized to assess the model 

accuracy so as to guide the selection of the most suitable model for predicting sugarcane productivity 

from 2021 to 2030.  The evaluated models included ARIMA (MAE: 34938.34, MSE: 1346939724, 

RMSE: 36700.68), RF (MAE: 70299.79, MSE: 6411363140, RMSE: 80070.99), SVM (MAE: 

35823.69, MSE: 1997556362, RMSE: 44694.03), and GBM (MAE: 83643.48, MSE: 8548489015, 

RMSE: 92458.04).  
 

Yield prediction 

The yield prediction of sugarcane crop between 2021 and 2030 were computed using diverse modelling 

techniques like ARIMA, RF, SVM, and GBM. Leveraging data from the website National Statistics 

on Sugarcane, ICAR (https://sugarcane.icar.gov.in/index.php/sugarcane-statistics/), these forecasts 

provide valuable insights into future productivity trends. By using the methods ranging from time 

series analysis to advanced machine learning algorithms, analysts sought to offer comprehensive 

forecasts, aiding the stakeholders in making informal decisions within the agricultural domain. 
 
 
 

RESULTS AND DISCUSSION 
 

 

Time series analysis 

The initial ADF test showed that the time series data are not stationary (Table 1). However, further 

research, including the use of auto.arima function and visual examination of ACF and PACF plots (Fig. 

1) revealed that differencing the data causes it to become stationary. This differencing process removes  
 

Table 1: Augmented Dickey-Fuller test 

Data: Sugarcane production 

Dickey-Fuller Lag order p-value 

-2.7262 2 0.2957 
Alternative hypothesis: Time series data is stationary 

https://sugarcane.icar.gov.in/index.php/sugarcane-statistics/
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Fig. 1: ACF and PACF plots for sugarcane production time series data 

 

underlying trends or seasonality. With the data transformed into a stationary series, we confidently 

fitted the ARIMA model, ensuring that it captured the relevant temporal patterns and dependencies. 

This facilitated the accurate predictions for the time series, such as sugarcane yield in this context. The 

Table 2 displays the best fitted ARIMA model along with the corresponding fitting measures, such as 

AIC, AICc, and BIC, which allowed us to compare different ARIMA models so as to select the model 

that strikes the right balance between accuracy and simplicity. 
 

   Table 2: Different ARIMA models with AIC and parameters of best fitted ARIMA model 

ARIMA models Akaike information criteria For best model ARIMA (0,1,0) 

ARIMA(2,1,2) with drift  sigma^2 1.456e+09 

ARIMA(0,1,0) with drift 458.3662 log likelihood -227.4 

ARIMA(1,1,0) with drift 460.3446 AIC 456.79 

ARIMA(0,1,1) with drift 459.5727 AICc 457.03 

ARIMA (0,1,0) 456.7942 BIC 457.74 

ARIMA(1,1,1) with drift ∞ - - 
 

In time series analysis, particularly for forecasting sugarcane productivity, the ARIMA model 

stands as a widely used method. This approach incorporates three key components: autoregression 

(AR), differencing (I), and moving average (MA). To commence ARIMA modelling process, it is 

imperative to assess the statistical properties and interdependencies within the time series data. The 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) serve as indispensable 

tools for this purpose. These functions help in unveiling the degree of correlation between observations 

at different time lags as well as aid in identifying potential patterns and trends. Further, to ensure the 

efficacy of ARIMA model, it is essential to address the issue of stationarity within the time series data. 

Augmented Dickey-Fuller (ADF) test emerges as a prominent method for testing stationarity. If initial 

assessment reveals non-stationarity, then differencing the data is employed to stabilize the mean and 

variance, effectively removing any underlying trends or seasonality. Following the stationarity 

transformation, correlograms are constructed to scrutinize the ACF and PACF. These plots provide 

insights into the lag structure of time series and assist in determining the appropriate orders of ARIMA 

model. 

To select the most suitable ARIMA model, various fitting metrics such as Akaike Information 

Criterion (AIC), corrected AIC (AICc), and Bayesian Information Criterion (BIC) are utilized. These 

metrics offer a quantitative means of evaluating the trade-off between model complexity and goodness 

of fit. Typically, ARIMA model with lowest AIC, AICc, or BIC values is deemed the best-fitted model. 

In the context of specific study, after conducting rigorous assessment and model selection procedures, 

the chosen ARIMA model was identified as ARIMA (0,1,0) based on its superior fitting measures. 

This model configuration signifies no autoregressive terms, one differencing term, and no moving 
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average terms. Thus, it captures the essential dynamics of sugarcane productivity time series 

effectively, paving the way for reliable forecasts and informed decision-making. The findings of this 

study align with previous research conducted by Mishra et al. (2021), who used ARIMA models to 

explain and forecast the production of sugarcane. This coherence underscores the effectiveness and 

applicability of ARIMA modelling in the domain of sugarcane production forecasting, consolidating 

its position as a valuable tool for agricultural research and planning. 
 

Machine learning methods 

Three machine learning algorithms viz., SVM, RF, and GBM, were applied to predict sugarcane 

productivity. Data pre-processing preceded model training to optimize the performance. Evaluation 

metrics for assessing the model accuracy included MAE, MSE, and RMSE. Among the evaluated 

models, ARIMA demonstrated lowest errors, making it the most promising choice for predicting 

sugarcane productivity. RF exhibited higher errors, indicating potential inadequacy for this dataset. 

SVM performed moderately well, closely trailing ARIMA in performance. However, GBM showed 

highest errors, suggesting limited suitability for this application. 

SVM proven most efficient with multi-dimensional data and limited training datasets. In contrast, 

RF gained favour for its efficient implementation and ability to mitigate overfitting via independent 

decision rules. Meanwhile, GBM functioning as an ensemble learner progressively refined the models 

from weaker learners, effectively addressing instances with high mistakes during the learning process. 

Employing the gradient descent method, GBM minimized errors. Before model training, data pre-

processing was conducted to optimize performance. Evaluation metrics such as MAE, MSE and 

RMSE were utilized to gauge model accuracy, guiding the selection of the most suitable model for 

predicting sugarcane productivity from 2021 to 2030.  
 

Table 3: Adequacy of different algorithms over holdout data 

Models MAE MSE RMSE 

ARIMA 34938.34 1346939724 36700.68 

Random Forest (RF) 70299.79 6411363140 80070.99 

Support Vector Machine (SVM) 35823.69 1997556362 44694.03 

Gradient Boosting Machine (GBM) 83643.48 8548489015 92458.04 
MEA = Mean absolute error, MSE =Mean square error, RMSE = Root mean square error 
  

Amongst the evaluated models ARIMA (MAE: 34938.34, MSE: 1346939724, RMSE: 36700.68), 

RF (MAE: 70299.79, MSE: 6411363140, RMSE: 80070.99), SVM (MAE: 35823.69, MSE: 1997556362, 

RMSE: 44694.03), and GBM (MAE: 83643.48, MSE: 8548489015, RMSE: 92458.04), ARIMA emerged 

as the most promising choice for the dataset due to its comparatively lower errors. RF exhibited notably 

higher errors, indicating potential inadequacy for this dataset. SVM performed moderately well, closely 

trailing ARIMA in performance. However, GBM showed highest errors among the models assessed, 

suggesting its limited suitability. Therefore, in present study ARIMA appeared as the preferred model 

for accurate predictions. The findings of this study align with Mourão de Almeida et al. (2021) thus 

focusing on the importance of accurate forecasting in sugarcane production. By employing ARIMA 

method and evaluating various statistical measures, including AIC, RMSE, MAE, and MAPE, the study 

identified suitable forecasting models for sugarcane production in India and its major producing states.  
 

Yield prediction 

The Table 4 presents detailed comparison of yield predictions (in '000 t) for sugarcane crops in India 

spanning from the years 2021 to 2030, employing ARIMA, RF, SVM, and GBM models. Notably, 

ARIMA consistently projected lower yields as compared to the machine learning models. This 

discrepancy highlights the distinct methodologies and underlying assumptions inherent in each 

modelling approach. 

The visualization of these predictions in Fig. 2 further illustrates the divergence between actual 

and forecasted sugarcane productivity, providing valuable insights into the performance of each model 

over the forecasted period. Moreover, these findings resonate with prior research by Sneha and 
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Bhavana (2023), emphasizing the efficacy of machine learning techniques in agricultural yield 

prediction. This comparative analysis enhances our understanding of sugarcane productivity dynamics 

and informs strategic decision-making in the agricultural sector, contributing to improved planning 

and resource allocation. 

Table 4 presents the yield prediction (in ‘000 t) of sugarcane crop in India for the years 2021 to 

2030 using ARIMA, Random Forest, SVM, and GBM. ARIMA consistently predicted lower yields as 

compared to the other models. These predictions are further visualized in Fig. 2, depicting both the 

actual and predicted productivity of sugarcane. 
 

Table 4: Yield prediction of sugarcane crop 

Year ARIMA (‘000 t) Random Forests (‘000 t) SVM (‘000 t) GBM (‘000 t) 

2021 333992.1 391036.2 376383.3 405396.7 

2022 333992.1 391036.2 372393.2 405396.7 

2023 333992.1 391036.2 367032.3 405396.7 

2024 333992.1 391036.2 361027.8 405396.7 

2025 333992.1 391036.2 355078.4 405396.7 

2026 333992.1 391036.2 349727.0 405396.7 

2027 333992.1 391036.2 345297.2 405396.7 

2028 333992.1 391036.2 341895.7 405396.7 

2029 333992.1 391036.2 339460.4 405396.7 

2030 333992.1 391036.2 337829.5 405396.7 

 

 
 

Fig. 2: Plot of comparison of sugarcane prediction (in '000 t) using different forecasting methods 
 

In conclusion, ARIMA emerged as the preferred model for accurate predictions of sugarcane 

productivity. Its ability to capture temporal patterns and dependencies, along with its comparatively 

lower errors, makes it well-suited for this application. However, further refinement and evaluation of 

machine learning models could potentially improve the predictive performance in future studies. The 

study is subject to the limitations, notably the assumption of stationarity inherent in the ARIMA model, 

which may not always hold true in real-world agricultural datasets. Additionally, while ARIMA 

showed promise, its simplicity might overlook nuanced patterns, warranting further exploration of 

more sophisticated modelling approaches. Furthermore, the influence of external factors like climate 
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and economic conditions on model performance underscores the importance of thorough validation 

and consideration of broader contextual factors for reliable predictions. 
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